Mostrando postagens com marcador IFR. Mostrar todas as postagens
Mostrando postagens com marcador IFR. Mostrar todas as postagens

terça-feira, 19 de agosto de 2014

Citation XLS - Stabilizer System Caution -





Cessna Citation XLS

Horizontal Stabilizer  Description
 
Descrição do Estabilizador Horizontal
The two-position horizontal stabilizer system
automatically repositions the aircraft’s horizontal stabilizer to improve flight characteristics.
 
O sistema de estabilizador horizontal de duas posições reposiciona o estabilizador horizontal da aeronave para melhorar as características do voo.
 
The horizontal stabilizer positions to one
of two positions: a +1 degree (cruise) or –2 degree (takeoff). The angle of incidence position depends on the flap handle position and airspeed by moving the entire horizontal stabilizer. When airspeed is greater than 215 knots ±10, the airspeed switch disables the arming valve preventing stabilizer movement to the –2° position.
As posições do estabilizador horizontal para uma das duas posições: uma de +1 grau (cruzeiro) ou -2 graus (decolagem). A posição do ângulo de incidência [ponpensação] depende da posição da alavanca dos flaps e da velocidade aerodinâmica ao movimentar o estabiizador horizontal inteiro. Quando a velocidade estiver maior do que 215 Knots  ± 10, o interruptor de velocidade incapacita a válvula de armar  impedindo o movimento do estabilizador para a posição -2°.


Airspeed Switch
 
Interruptor de Velocidade Aerodinâmica
The airspeed switch senses airspeed from the standby pitot static system and enables or disables the horizontal tail from downward movement towards the takeoff and approach position or upward movement towards the cruise position— based upon the airspeed sensed. The horizontal tail is enabled if airspeed is less than 215 ±10 knots; or disabled it if airspeed is greater than 215 ±10 knots. It is behind the copilot side panel, above the armrest.
O interruptor de velocidade aerodinamica detecta a velocidade do sistema de pitot estático auxiliar e habilita ou desabilita a cauda horizontal [estabilizador] do movimento para baixo na direção da posição decolagem e aproximação ou do movimento para cima na direção da posição cruzeiro — baseado na velocidade aerodinamica sentida. A cauda horizontal é habilitada se a velocidade estiver menor que  215 ± 10 knots; ou desabilitada, se a velocidade estiver  maior que 215 ± 10 knots. Ele [interruptor] está atrás do painel lateral do co-piloto, acima do apoio de braço.


The STAB MIS COMP light illuminates to indicate the horizontal stab position does not
agree with the flap handle position after 30 seconds of travel. (Unless the Landing Gear
is also selected, then the delay is 40 seconds).
A luz STAB MIS COMP ilumina-se para indicar que a posição do estabilizador horizontal não corresponde com a posição da alavanca de flaps após 30 segundos de movimentação dos flaps. (A menos que o Trem de Pouso esteja também selecionado, então o atraso é 40 segundos).




Stabilizer Monitoring System
 
Sistema de Monitoramento do Estabilizador
The two-position horizontal stabilizer control system is controlled by a flap-handle position and airspeed. With the flap-handle in the FLAPS UP detent position the horizontal stabilizer has an incidence of +1°. With the flap handle in any position other than the FLAPS UP detent and the airspeed no greater than 215 ± 10kts, the horizontal stabilizer has an incidence of –2°.
O sistema de controle do estabilizador horizontal com duas posições é controlado por uma alavanca de posição dos flaps e a velocidade aerodinâmica. Com a alavanca de flaps na posição do batente FLAPS UP [flaps recolhidos], o estabilizador horizontal tem uma incidência [desvio de compensação] de + 1°. Com alavancaa  de flaps em qualquer posição diferente  do batente  FLAPS UP e a velocidade não superior a 215 ± 10 knots  [398 Km/h ± 18 Km/h, uma margem entre 379 e 416 Km/h], o estabilizador horizontal tem uma incidência [desvio de compensação] de – 2°.
 
 
The horizontal stabilizer cannot
move down to an incidence of –2° if the
airspeed is greater than 215 ± 10 kts. It is prevented from moving in either direction if the landing gear is in motion. The two-position tailprinted circuit board (N2017) monitors the horizontal stabilizer position. The circuit board flashes the amber STAB MIS COMP annunciator and illuminates the MASTER CAUTION RESET switchlight under the following conditions:
 
O estabilizador horizontal não pode mover para baixo com uma incidência de –2° [menos 2°], se a velocidade for superior a 215 ± 10 knots. Ele [estabilizador]  é impedido de se mover em qualquer direção, se o trem de pouso estiver em movimento [recolhendo ou baixando) . A Placa de circuito impresso de duas posições (N2017) monitora a posição do estabilizador horizontal. A placa do circuito faz piscar a luz âmbar de anúncio STAB MIS COMP e ilumina a luz MASTER CAUTION RESET  sob as seguintes condições:
• Anytime the flap handle is not in the
“FLAPS UP” detent position and the stabilizer has not reached the incidence of
–2° within the predetermined time limit
of 30 seconds.
 
• A qualquer momento que a alavanca dos  flaps não estiver na posição do batente "FLAPS UP" e o estabilizador não tiver atingido a incidência de –2° dentro do limite de tempo pré-determinado de 30 segundos.
• Anytime the flap handle is in the “FLAPS
UP” detent position and the stabilizer has
not reached the incidence of +1 within the
predetermined time limit of 30 seconds.
 
• A qualquer momento que a alavanca de flaps estiver  na posição do batente  "FLAPS UP" e o estabilizador não tiver chegado a incidência de + °1 dentro do limite de tempo pré-determinado de 30 segundos.
• Anytime the PCB senses flap handle selected up and flap-handle is selected
down concurrently.
• Sempre que a Placa de Circuito Impresso sente o manuseio de flaps selecionado para cima e a alavanca  de flaps  estiver selecionada para baixo simultaneamente.


domingo, 17 de agosto de 2014

Citation PR-AFA - Non-Precison Instruments Approach Procedure


DOWNLOAD (com audio)



BLOQUEIO, é a primeira passagem da aeronave sobre a antena do auxílio à navegação quando  ela  chega da descida do nível de cruzeiro. Ela passa sobre a antena na altitude de início do procedimento de pouso por instrumentos e se AFASTA em determinado curso.

REBLOQUEIO, é a segunda passagem da aeronave sobre a mesma antena do auxílio à navegação quando ela retorna do AFASTAMENTO e via de regra passará numa altitude mais baixa e prossegue para o pouso.

Não se deve usar a terminologia REBLOQUEIO para uma aeronave que já está voando em órbita, pois cada passagem sobre a antena do auxílio,  estando orbitando, é um BLOQUEIO.

O termo REBLOQUEIO só existe para a aeronave que efetuou o AFASTAMENTO logo após passar pela primeira vez  sobre a antena ao descer do nível de cruzeiro.

Transcrição do trecho da fraseologia emitida a partir do Citation XLS PR - AFA:

"Papa, Romeo, Alpha, Fox[trot], Alpha,
 
vai fazer a ECHO UNO, é ... da pista Três, Cinco,
 
vai fazer o BLOQUEIO de Santos e o REBLOQUEIO, OK?

BLOQUEIO  e afastar direto".


O piloto usou a fraseologia internacional padrão para informar as intenções para pouso em aeroporto que possui somente rádio-estação de comunicações. As informações acerca das  intenções devem ser transmitidas para o órgão de controle de tráfego aéreo ANTES de inciar o procedimento de aproximação para o pouso.

Até o momento, os dados concretos da investigação são:

A rádio-estação do aeroporto de Santos, operada pela Aeronáutica, confirmou que o piloto declarou a "arremetida", e o operador da rádio-estação perguntou, "quais suas próximas intenções", e a resposta foi, "vou aguardar a melhoria de condições do tempo" (foram as últimas palavras com o operador). Foi confirmado também que os Flaps e Trem de Pouso estavam recolhidos após a arremetida.


No entanto, se os Flaps demorarem para recolher totalmente (alavanca dos Flaps na posição ZERO grau) e a velocidade ultrapassar 215 Knots ± 10 enquanto os Flaps ainda estiverem sendo recolhidos, o Sistema de compensação automática do compensador (Elevator) do estabilizador desabilita o estabilizador para se mover para posição  +1° (mais um grau), o qual serve para o voo após a arremetida e cruzeiro.

Esta situação é alertada no painel de anúncio de falhas pela iluminação da luz âmbar

STAB MIS COMP e isso dispara a luz de alerta MASTER CAUTION  RESET.

O próximo evento ocorre em milésimos de segundo.

O nariz da aeronave é "derrubado" violentamente (NÃO pelo piloto) e sim, pela condição do estabilizador imóvel, e se inicia uma descida vertiginosa e por mais que os pilotos tentem levantar o nariz do avião, não conseguem, pois necessitariam de muita força, uma vez que o estabilizador não se ajusta automaticamente em Nariz para  CIMA. O mergulho abrupto em baixa altitude e a velocidade cada vez mais aumentando, teoricamente, só seria interrompido se, e somente se, houvesse espaço aéreo vertical abaixo da aeronave para proceder a recuperação do mergulho.

Se a situação ocorrer no solo durante a corrida de decolagem, um alarma sera emitido para não decolar.

 A aeronave faz o mergulho íngreme independente das asas estarem niveladas. Esta condição de o nariz da aeronave ser ‘derrubado’ violentamente é exclusivamente devido ao turbilhonamento do ar que deixa o bordo de fuga das asas, o qual não está com o ajuste automático de compensação para ele, em +1°. Esse turbilhonamento do ar ao atingir o estabilizador, fluindo por baixo dele, força violentamente a cauda do avião subir, e consequentemente o nariz da aeronave desce violentamente.

 

Em outro acidente com aeronave da Suiça do mesmo modelo e tipo de aeronave, a ocorrência foi acima de 2000 pés sobre o mar e os pilotos conseguiram recuperar o voo normal na altitude de 914 pés.

 




domingo, 7 de julho de 2013

The Dark Side of the Visual Landing


 
The Dark Side of the Visual Landing

 The visual approach, intended to benefit everyone, frequently results in pilots experiencing exactly the opposite effect. Visual approach incidents reported to the ASRS frequently cite confusion, with resultant stress on the flight crews. There are a variety of performance errors revealed in ASRS reports.

 How do Visual Illusions Affect the Pilot's Perception?

Visual illusions result from the absence of or the alteration of visual references that modifies the pilot perception of his / her position relative to the runway threshold.

Visual illusions affect perception of heights, distances and/or intercept angles.
 
Visual illusions are most critical when transitioning from IMC and instrument references to VMC and visual references.

Visual illusions (such as the black-hole effect) affect the flight crew vertical and horizontal situational awareness, particularly during the base leg and when turning final (as applicable) and during the final approach.

Visual illusions usually induce crew inputs (corrections) that cause the aircraft to deviate from the original and intended vertical or lateral flight path.

 “Black hole” along the final approach flight path:

In case of approach over water or with an unlighted area on the approach path, the absence of visible ground features reduces the crew ability to perceive the aircraft lateral and vertical position relative to the intended flight path.

 

Low intensity lights create the impression of being farther away (hence on a shallower glide path).

 Decrease in Speed (Well Below Vapp) Before the Flare

Flight at too low a speed results in a high Angle-of-Attack and a high pitch attitude, and therefore, reduced ground clearance. When the aircraft reaches the flare height, the flight crew must significantly increase the pitch to reduce the sink rate. This will further reduce the ground clearance.

 Sink Rate Too High Just Prior to Reaching the Flare Height

If the sink rate is too high when the aircraft is close to the ground, the flight crew may attempt to avoid a firm touchdown by commanding a high pitch rate. This action will significantly increase the pitch attitude. However, if the resulting lift increase is not sufficient to significantly reduce the sink rate, a firm touchdown may occur. In addition, the high pitch rate may be difficult to control after touchdown, particularly in the case of a bounce.

 


Bounce at Touchdown

In the case of a bounce at touchdown, the flight crew may decide to increase the pitch attitude, to ensure a smooth second touchdown. If the bounce results from a firm touchdown associated with a high pitch rate, it is important for the flight crew to control the pitch, so that it does not continue to increase.

Crosswinds Not Handled Correctly

When the aircraft is close to the ground, the wind velocity tends to decrease, and the wind direction tends to turn (direction in degrees decreasing in northern latitudes). The flight crew must be aware that during the approach phase, and especially during the flare, a crosswind effect could suddenly increase the pitch of the aircraft, and result in tailstrike.

 HGST - Head-UP Guidance System Technology

 Most importantly, HGST provides real-time display of the aircraft Flight Path Vector and acceleration conformal with the real world scene and allows the pilot access to other critical information such as airspeed, altitude, etc. while viewing the outside scene.

 

Seventeen distinct safety properties of the HGST were defined

 The study concludes that in modern jet aircraft (glass cockpit) the HGST might have prevented or positively influenced 38% of the accidents overall.

 Of these accidents where the pilot was directly involved, such as takeoff and landing and loss-of-control accidents, the likehood of accident prevention due to HGST safety properties becomes much greater, 69% and 57%, respectively.

HGS SAFETY PROPERTIES

1. Flight Path Vector

The Flight Path Vector is inertially derived and provides instantaneous indication of where the aircraft is going relatively to the outside world on a conformal display.

2. Flight Path Acceleration

The acceleration (or deceleration) of the aircraft along the flight path is indicated by the Flight Path Acceleration symbol. The flight path acceleration is made up of the total acceleration forces acting on the aircraft, including acceleration generated by both the aircraft in the form of thrust and acceleration generated by the air mass the aircraft is moving through. To avoid confusion in the control of aircraft thrust, the Flight Path Acceleration symbol is removed from the display when the HGS detects a low-level decreasing performance windshear.

3. Guidance Cue

The guidance cue provides lateral/vertical guidance from the Flight Control Computers (FCC) and provides lateral/vertical guidance to touchdown through rollout from the HGS computer. It also provides takeoff guidance from the HGST computer for lower-than-standard takeoff minimums.

 4. Speed Error Tape

The speed error tape provides a positive or a negative presentation of airspeed difference between actual and selected airspeed with an intuitive tape presentation. It also provides the pilot very precise control of speed in conjunction with the inertia caret.

 5. Runway Remaining

The Runway Remaining symbology provides a digital readout in 500 feet increments during the takeoff ground roll and Category III Mode Rollout. The symbol simulates the runway markings such that the display will show a decrement by 500 feet as each marker is passed.

 6. Deceleration Rate Index

The deceleration rate index presented using the inertia caret indicates deceleration with respect to the airplane autobrake algorithms or other deceleration references familiar to the crew. The inertia caret algorithms run independently in the HGS computer and present an inertially derived deceleration indexed on the combiner. The index on the combiner is presented with indices that represent their values that correlate to the airplane autobrake settings or other deceleration performance references useful to the crew.
 

7. Unusual Attitude Display

During unusual attitudes, the HGS display automatically switches to a format designed for recognition of and recovery from the conditions. When the airplane attitude is restored to a stable condition, the display format is returned to the selected operating mode.

The HGS Unusual Attitude mode main display feature is a large attitude sphere in the center of the display with a distinct sky/ground indication. The basic airspeed and altitude scales from the Primary mode are also displayed, and the rest of the display is de-cluttered for concentration on the basic flight information. The Unusual Attitude mode is automatically entered and exited, overriding the currently selected normal operational mode on the display.

 8. Autonomous Flare Guidance

The Flight Path Canards will appear attached to the sides of the Flight Path. They appear at approximately 105 feet altitude AGL. The serve as reference points that position them in line with the Autonomous Flare Cue when the flare maneuver is being correctly executed.

 The Autonomous Flare Cue provides flare symbology in PRI, IMC AND VMC modes. The symbol is both a flare anticipation and flare symbology cue. To distinguish between these two functions the dashed lines will become solid lines when the symbol is to be used as a flare symbology cue.

The No Flare Annunciation provides an indication that Autonomous Flare symbology cannot be provided. The symbol displayed in the upper left area of the display.

 9. Tailstrike Limit and Tailstrike Advisory

On takeoff the HGS provides a Tailstrike Limit symbol that is displayed when the pitch attitude indicates that the airplane is rotating at a rate or to an extent that will cause a tailstrike. The symbol looks like a bar bell: O----O.  In order to avoid a tailstrike, the pilot must not allow the boresight symbol to pass through the Tailstrike Limit symbol.

 On landing, a Tailstrike Advisory is displayed in text on the combiner when the airplane is in an attitude or flares et a rate that would cause the airplane to strike the tail. This is caused by improper configuration, significant negative speed deviation or pilot induced oscillation from over-rotating during the flare.

10. TCAS Guidance

When a Resolution Advisory 9RA) is received from the TCAS Computer, a TCAS Resolution Advisory Symbol is displayed on the HGS display. TCAS Resolution Advisories are either corrective or preventive. Corrective advisories are issued when the aircraft vertical flight path must be altered to avoid collision, while preventive advisories are as issued when an intruder is within range, but the current vertical flight path of the aircraft is safe and the pilot only needs to monitor vertical speed.

When a Corrective Up or Corrective Down TCAS Resolution Advisory is received by the HGS, the Corrective Resolution Advisory symbol is displayed indicating  the "fly" region for the Flight Path symbol to avoid a collision with the other traffic.

11. Windshear Avoidance/Recovery Guidance/Performance Margin Awareness

Early recognition of wind shear is identified by observing the erratic wind direction and wind velocity on the direction symbol and velocity symbol. The HGS/HUD will provide an intuitive and immediate identification of performance margin available to the pilot during a wind shear recovery by displaying the AoA limit symbol. The pilot maintains the flight path vector over the solid guidance cue and between the zero degree pitch line and the AoA limit symbol. The pilot is able to monitor the energy of the airplane via the inertia caret, which combined with the Speed Error Tape, can also provide indications of windshear conditions. To avoid confusion in the control of aircraft thrust, the Flight Path Acceleration symbol is removed from the display when the HGS detects a low-level decreasing performance windshear.

 12. Improved Pilot Performance during Engine Failure on Takeoff Operations

The following symbols provide the pilot with a more intuitive method to quickly ascertain airplane plate, stability, performance and performance margin.

Flight path vector

Inertia caret

Speed error tape

Slip skid

Zero degree pitch line

Angle of Attack Limit (AoA)

 This set of symbols allows the pilot to quickly and intuitively determine the inputs required to stabilize the airplane for engine-inoperative flight. The flight path displays the airplane's path referenced to the zero degree pitch line to establish a positive rate of climb, The AoA limit symbol provides the pilot a  visual reference establishing the maximum ascent capability. The area displayed between the glideslope reference line and the AoA limit determines the performance margin available. The flight path also presents lateral position and when referenced to the slip/skid indicator intuitively provides guidance to the pilot to apply the appropriate rudder forces to stabilize the airplane laterally. The speed error tape presents precise speed control to maintain the designated speed or the engine-out condition. Since the speed the pilot must maintain can vary with when the engine failure occurred during the profile, the speed error tape can be a significant benefit to the pilot in establishing and maintains the desired speed.

13. Surface Movement Guidance

Surface Movement Guidance is a  system that will help pilots navigate better on airport taxiways and runways. The Surface Guidance System (SGS) uses an airport database to identify the centerline and edges of the current runway or taxiway the aircraft is operating on, and display virtual centerline, edges lines, signs and other symbols that overlay the actual airport taxiways, runways and signage will be able to maneuver on the ground with confidence and minimize runway incursions. This capability will utilize multiple technologies to provide accurate position information to ATC and other aircraft.

 14. Weather Avoidance

The zero degree pitch line can be used to determine whether the airplane has the ability to safely fly over low-level thunderstorm in the airplane's path, or the flight path vector can be used to determine a safe and efficient route to circumnavigating thunderstorms.

 15. Selectable Descent Path - Glideslope Reference Line

The reference setting for glideslope is indicated by the position of the Glideslope Reference Line relative to the Horizon Line. The Reference Glideslope value is also displayed digitally at both ends of the Glideslope Reference Line. The Glideslope Reference Line is a conformal display representing the glideslope value selected on the HCP or MCDU or received from the FMC, meaning that the Glideslope Reference Line overlaying a pointy on the ground indicates that the airplane position is at an angle equal to the glideslope reference point.

Maneuvering the aircraft so that the Flight Path symbol overlies any point along the symbol's dashed line results in a descent angle equal to the glideslope value selected. Initiating a descent when the Glideslope Reference Line overlays the runway touchdown zone allows a constant descent angle approach to be flown with pure visual information.

 16. Energy Management during RTO

The inertia caret and deceleration index are used to monitor the Rejected Takeoff (RTO) function. The inertia caret and deceleration index presentation display to the pilot the stopping efficiency and capability of the airplane. The pilot knows the stopping value associated with indexed points of the display and the inertia caret represents the level of braking effect the system is experiencing.

17. Angle of Attack (AoA)

The Angle of Attack Scale and Indicator is displayed in the upper right of the display. It consists of a round dial with pointer and a digital readout that indicate the aircraft's current angle of attack.

 The angle of attack approach reference band is displayed on the Angle of Attack Scale. It indicates the normal approach angles of attack when the flaps are in a landing position.

The angle of attack stick shaker trip point is displayed to provide a visual indication of the aircraft's stick shaker angle of attack.

 Approach

A stabilized approach (i.e. pitch, thrust, flight path, VAPP) is essential for achieving a successful landing.

Auto thrust and the Flight Path Vector (FPV), if available, are effective flight crew aids.

For the approach phase, the flight crew should:

 • Not chase the glide slope close to the ground: Progressively and carefully monitor the pitch attitude and sink rate.

• Avoid high sink rate when close to the ground.

PNF callouts during the final approach are essential to alert the PF of any excessive deviation of flight parameters, and/or excessive pitch attitude at landing. Following a PNF flight parameter exceedance callout, the suitable PF response will be to:

 • Acknowledge the PNF callout, for proper crew coordination purposes

• Take immediate corrective action to control the exceeded parameter back into the defined stabilized conditions

• Assess whether stabilized conditions will be recovered early enough prior to landing, otherwise initiate a go-around.

 Landing

The flight crew should avoid “holding off the aircraft” in an attempt to make an excessively smooth landing.

Immediately after main landing gear touchdown, the PF should release the back pressure on the sidestick (or control column, as applicable) and fly the nose wheel smoothly, but without delay, on to the runway.

The PNF should continue to monitor the attitude.

“PITCH, PITCH” auto callout (synthetic voice, if installed) triggers when pitch becomes excessive during flare and landing.

The Pitch Limit Indication on the PFD (if installed) can also help flight crew awareness, because it indicates the pitch limit before a tailstrike.

Bouncing at Touchdown

In case of a light bounce, the flight crew can apply the following typical recovery technique:

• Maintain a normal landing pitch attitude:

- Do not increase pitch attitude, as this could cause a tailstrike

- Do not allow the pitch attitude to increase, particularly following a firm touchdown with a high pitch rate.

Note: Spoiler extension may induce a pitch-up effect.

 • Continue the landing

• Keep thrust at idle

• Be aware of the increased landing distance.

In case of a more severe bounce, the flight crew should not attempt to land, because the remaining runway length might not be sufficient to stop the aircraft.

For more information, refer to the Flight Operations Briefing Note Bounce Recovery – Rejected Landing.
 
 

sexta-feira, 23 de novembro de 2012

Trial in the Sky - The Judge, The Pilot, Two Aviation Inspectors and Four Passengers







The Law Judge, The Pilot, Two FAA's Inspectors and Four Passengers
 
O Juiz, O Piloto, Dois Inspetores de Aviação e Quatro Passageiros
 
Tradução Humana por George Rocha
 
On July 14, 2010 the pilot CLIFFORD S. KAMM took off his deHavilland Model DHC-2 seaplane with six passengers, two of them were FAA aviation safety inspectors for a sight-seeing tour .
During the flight, the FAA inspectors, Martine Sawtelle and Danny Billman, from the Anchorage Flight Standards District Office (FSDO), believed the pilot flew through several small clouds near Misty Fjords National Monument.
 
Em 14 JUL 2010, o piloto Clifford Kamm decolou o avião dele, um deHavilland Model DHC-2 com seis passagiros, dois deles eram inspetores da segurança de aviação da FAA [Agência de Aviação Civil Americana] para um voo panorâmico.
Durante o voo, os inspetores da FAA, Martine Sawtelle e Danny Billman, do Escritório Distrital de Ancorage para Padrões de Voo (FSDO), julgaram que o piloto voou através de várias nuvens pequenas perto do Monumento Nacional Fiordes Nebulados.
 
Inspector Sawtelle observed the clouds through the window on the left side of the aircraft, but not through the windshield. Inspector Billman observed the pilot flying the aircraft through the clouds, and was alarmed, stating, “when we entered into the cloud it [sic] was no visibility, no terrain that I could see anywhere around the aircraft from my seat and I was alarmed. My heart rate went up and I know [Inspector Sawtelle] was shocked as well. We talked about it; it scared us.”
 
A inspetora Sawtelle observou as nuvens através da janela do lado esquerdo da aeronave, mas não através do pára-brisas. O Inspetor Billman observou o piloto voando através das nuvens, e ficou assustado, declarando, “quando nós entramos na nuvem, ficou sem visibilidade, sem visão do terreno que eu pudesse ver algum local em volta da aeronave a partir do meu assento e eu fiquei sobressaltado. O batimento do meu coração subiu e eu sei que a [Inspetora Sawtelle] estava também chocada. Nós conversamos acerca disso; isso assustou-nos."
The four tourist passengers did not recall the pilot  flying the aircraft through clouds during the flight.
Os quatros passageiros turistas não se lembram do piloto voando a aeronave através de nuvens durane o voo.
 
On May 10, 2011, the FAA issued an order suspending pilot’s certificates for a period of 120 days, based on the alleged violations of §§ 91.155(a) and 91.13(a).
Em 10 MAI 3011, a FAA emitiu uma ordem suspendendo os certificados do piloto por um período de 120 dias,  baseada nas alegadas violações dos Parágrafos 91.155 (a) e 91.13 (a).

3 Seção 91.155(a) Proibe qualquer pessoa de operar uma aeronave sob Regras de Voo Visual quando a visibilidade do voo estiver menor, ou numa distância de nuvens que esteja menos, que a prescrita distância para a altitude correspondente e classe de espaço aéreo numa tabela específica incluída na regulamentação.
Com respeito ao espaço aéreo Classe G, o qual é a categoria relevante ao voo em causa, a tabela fornece como estabelecido:
 
 
 

AIRSPACE

FLIGHT VISIBILITY

DISTANCE FROM CLOUDS

Classe G:

1200 pés ou menos acima da superfície (independente de altitude [nível médio do mar] MSL)

Dia, exceto como estabelecido no parágrafo 91.155(b)

1609 metros

Livre de nuvens
 

4 Seção 91.13(a) proíbe operação negligente ou descuidada tal como por em perigo a vida ou propriedade de outrem.
 
 
 
 
 


The FAA inspectors documented pilot’s conduct by taking photographs during the flight and writing statements approximately two weeks after the flight.
FAA issued an Order of Suspension, alleging that the pilot failed to remain clear of clouds during a flight under Visual Flight Rule (VFR).
 
 
Os inspetores da FAA documentaram a conduta do piloto ao tirar fotografias durante o voo e escrever declarações aproximadamente duas semanas depois do voo.
A FAA emitiu uma Ordem de Suspensão, alegando que o piloto falhou em permanecer livre de nuvens durante um voo sob Regras de Voo Visual (VFR).
On May 19, 2010 the pilot appealed the order.
The case proceeded to a hearing before the law judge on October 25 and 26, 2011. The case proceeded to hearing in Ketchikan, Alaska.
 
Em 19 MAI 2010, o piloto apelou da ordem.
O caso prosseguiu para uma audiência diante do juiz em 25 e 26 OUT 2011. O caso foi processado para audiência em Ketchikan, Alaska.
FAA's Inspectors Background
Inspector Sawtelle holds private pilot, flight instructor, commercial, and airline transport pilot (ATP) certificates. She testified she has single engine (seaplane) and multiengine privileges accompanying her commercial certificate, and she obtained her ATP certificate in a multiengine land aircraft. Inspector Sawtelle joined the Anchorage Flight Standards District Office (FSDO) as an aviation safety inspector in September 2007.
Background dos Inspetores da FAA
A Inspetora Sawtelle possui certificados de Piloto Privado, Instrutor de Voo, Piloto Comercial e Piloto de Transporte Aéreo (ATP). Ela testemunhou que ela tem homologações para aeronave aquática monomotora e  [aviões] multimotores acompanhando o certificado de piloto comercial dela, e ela obteve  o certificado de PLA dela numa aeronave multimotora terrestre. A Inspetora Sawtelle juntou-se ao Escritório Distrital de Anchorage de Padrões de Voo (FSDO) como uma inspetora de segurança de aviação em Setembro de 2007.
 
Inspector Billman holds a mechanic certificate with airframe and powerplant, as well as an inspection authorization.
 
O Inspetor Billman possui um certificado de mecânico de estrutura e motor, tanto quanto uma autorização para inspeção.
Pilot Background
With regard to pilot certificates, he stated, “I'm also a commercial pilot, instrument, multiengine land and sea,” and has “a little over 23,000 hours”.
Background do Piloto
Com respeito aos certificados do piloto, ele declarou, “Eu também sou um piloto comercial, [com certificado de voo por] instrument os, [homologado para aeronaves] multimotora aquática e terrestre,” e tem  “um pouco mais de 23.000 horas [de voo]”.
 
Inicial Hearing
At the hearing, the FAA presented the testimony of Aviation Inspectors Nartine Sawtelle and Danny Billman.
They testified that they were assigned to conduct unannounced surveillance of air tour operations in Southeast Alaska. As part or that assignment, they took a "flight seeing" tour on Seawind Aviation, the pilot's business operation.
 
Audiência Inicial
Na audiência, a FAA apresentou o depoimento dos Inspetores nartine Sawtelle e Danny Billman. Eles afirmaram que eles foram designados para conduzir vigilância não anunciada de operações de turismo aéreo na Souteast Alaska. Como parte ou nessa designação, eles tomaram um “voo panorâmico” na [empresa] Seawind Aviation, a empresa executiva do piloto.
Each inspector provided testimony as to what they saw during the subject flight and provided their individual versions as to when the aircraft was alleged to have flown through clouds. Inspector Sawtelle testified that she witnessed part of the aircraft's left wing tip through clouds and then later in the flight witnessed the aircraft flying in the clouds for up ten seconds.
Cada inspector forneceu depoimento quanto  ao que eles viram durante o voo em questão e forneceram suas versões individuais quanto a onde a aeronave foi alegada ter voado através de nuvens.
A inspetora Sawtelle depôs que ela testemunhou parte da ponta da asa esquerda da aeronave através de nuvens e depois mais tarde no voo testemunhou a aeronave voando dentro das nuvens por até dez segundos.
 
Inspector Sawtelle testified that she witnessed the aircraft flying in the clouds for up to ten seconds.
A inspetora Sawtelle afirmou que ela testemunhou a aeronave voando dentro das nuvens por até dez [10] segundos.
Inspector Billman testified that he observed the aircraft flying through small clouds at least eight times before seeing it fly in the clouds for approximately twelve-to-fifteen seconds.
O Inspetor Billman afirmou que ele observou a aeronave voando através de pequenas nuvens pelo menos oito vezes antes de vê-la voando dentro das nuvens por aproximadamente doze a quinze segundos.
 
The pilot testified on his own behalf and also presented the telefonic testimony of the four passengers that were on the flight at issue. The pilot testified that he knew the Inspectors were on board the aircraft, as his wife informed him of that fact. Pilot's wife had asked Inspector Sawtelle if she was with the FAA when Inspector Sawtelle made the reservation for the flight.
O piloto depôs em sua própria defesa e também apresentou o depoimento telefônico dos quatro passageiros que estavam no voo em causa. O piloto depôs que ele soube que os inspetores estavam a bordo da aeronave, quando a esposa dele o informou desse fato. A esposa do piloto tinha perguntado à inspetora Sawtelle se ela estava [trabalhando] na FAA quando a inspetora Sawtelle fez a reserva para o voo.
 
Inspector Sawtelle testified that she responded to that inquiry by saying that she and Inspector Billman were on vacation.
A inspetora Sawtelle depôs que ela respondeu para essa pergunta ao dizer que ela e o inspetor Billman estavam de férias.
 
The pilot maintained that he did not fly through clouds during the flight in issues and surely would not have flown through clouds knowing that there were two FAA Inspector on board.
 
O piloto manteve que ele não voou através de nuvens durante o voo em causa e seguramente não teria voado através de nuvens sabendo que havia dois Inspetores da FAA a bordo.
Passenger-Witnesses
All of the pilot's passenger-witnesses: Bill Spruill, his brother Steve Spruill and their wives, Paula and Diane Spruill, testified via telephone due to the fact that they lived in Georgia. They all testified that the pilot's aircraft did not fly through clouds.
 
Passageiros Testemunhas
Todos os passageiros testemunhas do piloto: Bill Spruill, o irmão dele Steve Spruill e as esposas deles, Paula e Diane Spruill, depuseram via telefone devido o fato que eles vivem na Georgia. Eles todos depuseram que a aeronave não voou através de nuvens.
Judge Inicial Decision
"At the conclusion of the hearing, I issued an Oral Initial Decision (OID), in which I found that the FAA had not proven, by a preponderance of probative, reliable and credible evidence, that the pilot had commited the FAR violations alleged, and, on that basis, reversed the FAA's Order of Suspension.
Decisão Inicial do Juiz
“Na conclusão da audiência, Eu emiti uma Decisão Inicial Oral (DIO), na qual eu constatei que a FAA não tinha provado, por uma preponderância de evidência probativa, confiável e crível, que o piloto tivesse cometido as alegadas violações à FAR, e, nessa base, revoguei a Ordem de Suspensão da FAA.
 
The FAA did not appeal the OID.
A FAA não apelou da Decisão Inicial Oral.
Judge Conclusion
At the conclusion of the hearing, the law judge delivered an oral initial decision, in which he determined the FAA did not prove the charges in the complaint. The law judge
stated the video and photographic evidence failed to prove the Administrator’s case, because none of the evidence showed the aircraft proceeding through clouds. In addition, the law judge noted all four of the tourist passengers testified the aircraft did not fly through clouds. The law judge carefully analyzed the evidence, and found the inspectors’ testimony less reliable than the other passengers’ testimony. The law judge based this determination on inconsistencies between the inspectors’ written statements, drafted approximately two weeks following the flight at issue, and their testimony at the hearing. The law judge further stated the two inspectors’ testimony was not corroborative:
 
Conclusão do Juiz
Na conclusão da audiência, o juiz despachou uma decisão inicial oral, na qual ele determinou que a FAA não provou as acusações na denúncia. O juiz declarou que o video e evidência fotográfica falharam em provar a causa da [agência] Administradora, porque nenhuma evidência mostrou a aeronave progredindo através de nuvens. Em acréscimo, o juiz notou que todos quatros passageiros turistas depuseram que a aeronave não voou através de nuvens. O juiz cuidadosamente analizou a evidência, e achou menos confiável os depoimentos dos inspetores do que os outros depoimentos dos passageiros. O juiz baseou sua determinação nas inconsistências entre as declarações escritas dos inspetores, rascunhadas aproximadamente duas semanas seguintes ao voo em causa, e os depoimentos deles na audiência. O juiz declarou ainda mais que os dois depoimentos dos inspetores não eram corroborativos:
Inspector Billman does not corroborate Inspector Sawtelle’s testimony that the left
wing disappeared into clouds for a matter of moments. However, in stark contrast, Inspector Billman testified that the aircraft flew through small clouds approximately eight times during the flight. Inspector Sawtelle did not corroborate his testimony on this point and she only testified about two specific instances of flying into the clouds.
O Inspetor Billman não corroborou o depoimento da Inspetora Sawtelle de que a asa esquerda desapareceu dentro de nuvens por questão de momentos. Todavia, em absoluto contraste, o Inspetor Billman depôs que a aeronave voou através de pequenas nuvens aproximadamente oito vezes durante o voo. A Inspetora Sawtelle não corroborou seu depoimento neste ponto e ela somente depôs acerca de dois casos específicos de voar dentro das nuvens.