Mostrando postagens com marcador airplane. Mostrar todas as postagens
Mostrando postagens com marcador airplane. Mostrar todas as postagens

sexta-feira, 7 de junho de 2013

Breeding New Bird - In Its Nest - Mamas & Papas



Marie-Christine Mairet-Cazin, simulator manager, talked about AC-1: "It's more of a prototype. The interior looks just like a real cockpit, but the controls are linked to PCs, not to actual moving parts. Today's aircraft are much more technologically advanced than those of even 10 years ago. So one of the main roles of AC-1 is testing functions such as the enhanced Brake to Vacate and Runway Overrun Prevention System, two systems designed to reduce the chance of accidents on runways."
Marie-Christine Mariet-Cazin, gerente de simulador, falou acerca do [simulador] AC-1: “ Ele ‘e mais que um protótipo. O interior parece exatamente com um cockpit real, mas os controles são conectados a Computadores Pessoas [PC], não a partes móveis reais. Aeronaves de hoje são muito mais avançadas tecnologicamente do que aquelas de até 10 anos atrás. Assim uma dos papeis principais do AC-1 é testar funções tais como o realce ‘Freio para  Evacuar’ e ‘Sistema de Prevenção de Traspassar a Pista’, dois sistemas planejados para reduzir a chance de acidentes nas pistas”.

 

 
 

quarta-feira, 14 de dezembro de 2011

Evidence That Pilots Are Failing - FAA Says - Maybe to Colgan and AF447

STALL recovery review posted here on SEP 2011
http://aviationtroubleshooting.blogspot.com/search?updated-max=2011-10-12T06:04:00-03:00&max-results=6



ENGLISH   PORTUGUÊS


DRAFT
Advisory Circular
Stall and Stick Pusher Training
Initiated by: AFS-200
AC No: 120-STALL

An aircraft stall warning system includes an angle of attack sensor which provides a signal to an angle of attack processor which provides an angle of attack signal to a display. An air pressure sensor provides an air turbulence intensity ratio signal to an aerodynamic performance processor which provides an aerodynamic performance signal to the display. The display therefore simultaneously displays both theoretical stall margin and actual stall margin to thereby provide a pilot with wing contamination information.

Um sistema de alarma de stall [perda de sustentação] de aeronave inclui um sensosr de ângulo de ataque {AoA}, o qual fornece sinal para um processador de ângulo de ataque, o qual fornece sinal do ângulo de ataque para um mostrador. Um sensor de pressão do ar fornece um sinal da taxa de intensidade do ar turbulento para um processador de performance aerodinâmica, o qual forcenece um sinal de performance aerodinâmica para o mostrador. O mostrador todavia apresenta simultaneamente ambas margem teórica de stall e margem real de stall para em consequência prover um piloto com informação de contaminação de asa.





The history of accidents resulting from loss of control (LOC) following a stall indicates the need for providing realistic scenarios from which pilots may be taught to respond to inadvertent stall conditions.

A história de acidentes resultantes de perda de controle (LOC) seguindo uma perda de sustentação indica a necessidade de fornecer cenários realísticos, nos quais pilotos podem ser ensinados a responder às condições inadvertidas de stall.


(1)  With one or two remarkable exceptions, most accidents have occurred following an approach-to-stall while flying on autopilot. Nonetheless, many air carriers and operators have traditionally trained their pilots to enter an approach-to-stall condition without the aid of an autopilot. The most challenging difference between an approach-to- stall event with the autopilot engaged and one that was flown by the pilot, is the abrupt pitch and trim change commonly associated when the autopilot unexpectedly disconnects. This dramatic pitch and trim change typically represents an unexpected physical challenge to the pilot when trying to reduce angle of attack (AOA).



(1) Com uma ou duas exceções notáveis, muitos acidentes têm ocorrido seguindo uma aproximação-de-stal, enquanto voando no piloto automático. todavia, muita empresas aéreas e operadores têm tradicionalmente trinado seus pilotos para entrar numa condição de aproximação-de-stall sem a ajuda de um piloto automático. A maior diferença desafiante entre um evento de aproximação-de-stall com o piloto automático engajado e uma que foi voada pelo piloto, é o abrupto pitch {ângulo} e mudança de trim {compensador} comumente associados quando o piloto automático inesperadamente disconecta. Esta mudança dramática de 'pitch' e 'trim' tipicamente representa um desafio físico inesperado para o piloto quando tentando reduzir o ângulo de ataque (AoA).


(2) The situation may be exacerbated in some aircraft by a pitch up moment resulting from the pilot increasing the power in response to the approach-to-stall warning. In addition to the dynamic pitch changes experienced, the noises associated with stick shakers and autopilot disconnect alarms add to the confusion in the cockpit. These noises present a real distraction as well as an alert to the pilots and are not present unless the stall scenario is accomplished with the aircraft’s autoflight systems engaged. Today’s FFSs enable pilots to experience these effects without the risks associated with actual aircraft flights.




(2) A situação pode ser exacerbada em muitas aeronaves com um momento de elevação do nariz da aeronave resultante do piloto aumentar a potência em resposta ao aviso de aproximação-de-stall. Em acréscimo às mudanças dinâmicas de 'pitch'experimentadas, os ruídos associados ao Stick Shakers e alarmas de desconexão do piloto automático adicionados à confusão na cockpit. Estes ruídos apresentam uma distração real tanto quanto um alerta para os pilotos e não estão presentes, a menos que o cenário de stall seja realizado com o sistema de piloto automático da aeronave engajado. Os Simuladores de Voo Completos de hoje capacitam pilotos a experimentar estes efeitos sem os riscos associados em voos reais de aeronaves.

b. Emphasis on AOA.

It must be emphasized that the only way to recover from a stall or an approach-to-stall is to reduce AOA, and such recovery will almost always result in some loss of altitude. In fact, in a very high altitude event, the recovery from an approach-to-stall may require thousands of feet of descent.



b. Ênfase no AoA.
Deve ser enfatizado que o único jeito de se recuperar de um stall ou uma aproximação-de-stall é reduzir o AoA, e tal recuperação quase sempre resulta numa perda de altitude. De fato, num evento em altitude muito elevada, a recuperação de uma aproximação-de-stal pode exigir milhares de pés de descida.

c. High Altitude Stall.

Jet aircraft and high-performance turboprops have very high cruising altitudes and little residual thrust is available. Pilots should be trained to make measured and proportional control inputs that acknowledge the extra sensitivity (increased pitch rates) of flight controls in this regime, and they must demonstrate the ability to sacrifice altitude to recover. Applicable sections of the Airplane Upset Recovery Training Aid on high altitude stalls should be used in air carrier training programs.



c. Stall em Alta altitude.

Aeronave à jato e turbo-hélices de alta performance têm altas altitudes de cruzeiro e pouca potência residual disponível. Pilotos devem ser treinados a dar entrada de controle proporcional e sob medida que reconheça a sensibilidade extra (taxa de pitch aumentada) de controles de voo neste regime, e eles devem demonstarar a habilidade de sacrificar altitude para recuperar. Seções aplicáveis de Ajuda do Treinamento de Recuperação de Aeronave Descontrolada em stalls em alta altitude deve ser usadas nos programas de treinamento de empresas aéreas comerciais.

d. Automated Flight.

The vast majority of incidents following approach-to-stall events in aircraft occur during automated flight. Approach-to-stall maneuvers should be practiced with autopilot on when available. When autothrottles are installed, the instructor/examiner may wish to disable them—with or without the pilots’ knowledge. Scenario-based stall events should include both AP and hand-flown scenarios.



d. Voo automatizado.

A grande mairia de incidentes seguindo eventos de aproximação-de-stall em aeronave ocorre durante voo automatizado. Manobras de aproximação-de-stal devem ser praticadas com piloto automático ligado [engajado] quando disponível. Quando Autothrottles {sistema automático de aceleração/desaceleração de potência} estão instalados , o instrutor/examinador pode desejar desabilitá-los - com ou sem o conhecimento dos pilotos. Eventos de stall em baseado em cenário devem incluir ambos  Piloto Automático e cenários de voo manual.

e. Crew Concept.

Since real world stall events normally surprise (or startle) the flightcrew, it is recommended that any line-oriented stall training event be introduced in such a way as to surprise all crewmembers if practical. If an instructor must use the pilot monitoring (PM) to help provide a surprise stall event to the pilot flying (PF), as soon as an approach-to-stall indication exists, the PM should resume proper crew responsibilities in the recovery.

e. Conceito de Tripulação.

Uma vez que eventos de stall no mundo real normalmente surpreende (ou assustam) a tripulação de voo, é recomendado que qualquerlinha orientada de evento de treinamento de stall seja introduzida de um tal modo que surpreenda todos membros da tripulação se for prático. Se um instrutor deve usar o Pilot Monitoring {PM} para ajudar fornecer um evento de surpresa de stall para o Pilot Flying {PF}, tão logo quanto exista indicação de aproximação-de-stall, o PM deve assumir as responsabilidades apropriadas de tripulante na recuperação.

f. Original Equipment Manufacturer (OEM) Procedures.

The primary authority on approach-to-stall recovery is the aircraft manufacturer.
Nothing in this AC should be construed as overriding OEM procedures.

f. Procedimentos Originais do Fabricante do Equipamento.

A autoridade primária na recuperação de aproximação-de-stal é o fabricante da aeronave. Nada nesta Circular deve ser imterpretado como neutralizando procedimentos OEM.

g. Energy Management.

Most stalls occur when sufficient altitude is available for the crew to recover. Pilots are to be trained and evaluated on their timely response and effective use of available energy (i.e., altitude and speed) when presented with a stall scenario. At no time should minimum altitude loss be a criterion for successful demonstration of an approach-to-stall or full stall recovery. Rather than instinctively using maximum power, the recovery should emphasize energy management and power application, as required depending on the situation. If the approach-to-stall occurs prior to the approach phase, the recovery may simply require a pitch over and an increase in power. If the approach-to-stall occurs much lower and ground contact becomes a factor, then a larger thrust increase may be required, which might result in an unstabilized approach at low altitude and result in a go-around. The successful recovery from a stall scenario requires the evaluator to consider the pilot’s response to the situation with which they are confronted.

g. Gerenciamento de Energia.

Muitas perdas de sustentação ocorrem quando altitude suficiente está disponível para a tripulação recuperar. Pilotos estão para ser treinados e avaliados nas suas respostas oportunamente e efetivo uso de energia disponível (exemplo, altitude e velocidade) quando apresentada com um cenário de stall. Em nenhum momento deve a perda minima de altitude ser um critério para demonstração bem sucedida de uma aproximação-de-stall ou recuperação completa de stall. Mesmo que instintivamente usar potência máxima, a recuperação deve emfatizar gerenciamento de energia e aplicação de potência, como requerida dependendo da situação. Se a aproximação-de-stal ocorre antes da fase de aproximação, a recuperação pode simpesmente exigir um 'pitch'a mais e um aumento de potência. Se a aproximação-de-stall ocorre muito baixa e contato com o solo torna-se um fator [de risco], então um maior aumento de potência pode ser exigido, o qual pode resultar numa aproximação desestabilizada em baixa altitude e resultar numa arremetida. A recuberação bem sucedida de um cenário de stall exige do avaliador considerar a resposta do piloto à situação com a qual eles são cofrontados.

h. Simulator Capabilities.

Instructors and evaluators must understand the fidelity limitations of the particular simulator.

h. Capacidade do Simulador.

Instrutores e avaliadores devem entender as limitaçoes de fidelidade do simulador em particular.

i. Stall Entry.

The tradition of having pilots memorize routines to enter an approach-to-stall is of little or no value for training for the actual inadvertent event in an aircraft.
This AC recommends that the responsibility for the setup be shifted from the trainee to the trainer/evaluator. Therefore, the instructor/evaluator needs to demonstrate creativity in presenting the stall event.

i. Entrada em Stall.

A tradição de ter os pilotos que memorizar rotinas para entrar numa aproximação-de-stall é de pouco ou nenhum valor para treinamento para o evento inadvertido real numa aeronave.
Esta Circular recomenda que a responsabilidade para o ajuste seja deslocada do [piloto] em treinamento para o treinador/avaliador. Embora, o instrutor/avaliador necessite demonstar criatividade em apresentar o evento de stall.




Training organizations should adjust their stall evaluation criteria as appropriate and train their evaluators in these changes. The primary goal of checking should be to evaluate a pilot’s immediate response to a stall warning indication and their timely, correct accomplishment of the
AFM-approved stall recovery procedure.

Organizações de treinamento devem ajustar seus critérios de avaliação de stall como apropriar e trainar seus avaliadores nestas mudanças. A meta principal de verificação deve ser avaliar a resposta imediata do piloto à indicação de aviso de stall e sua oportuna, realização correta do procedimento de recuperação de stall aprovado no Manual de Voo da Aeronave.
Evaluation Perimeters.
The examiner (not the applicant) is responsible for establishing the flight conditions associated with the approach-to-stall configuration being evaluated. While the applicant may fly the entry profile, they are not being evaluated on the entry. The satisfactory completion of the event is based on the pilot’s immediate response to a stall warning indication and if they accomplished the approved stall recovery procedure.

Perímetros de Avaliação.

O examinador (não o candidato) é responsável pelo estabelecimento das condições de voo associadas com a configuração de aproximação-do-stall sendo avaliado. Enquanto o candidato puder voar o perfil de entrada, eles [perímetros] não estão sendo avaliados na entrada. A conclusão satisfatória do evento é baseada na resposta imediata do piloto para a indicação de aviso de stall e se eles completaram o procedimento aprovado de recuperação do stall.

Evaluation Criteria.

Evaluation criteria for a recovery from an approach-to-stall must not mandate a predetermined or minimum loss of altitude. Proper evaluation criteria must consider the variables that are present at the time of the stall warning and their effect on the recovery altitude. The pilot should recover to the maneuvering speed appropriate for the aircraft configuration without exceeding the aircrafts limitations or losing excessive altitude consistent with the aircraft performance capabilities. It is expected that some loss of altitude will occur during the recovery. The pilot should, however, give due consideration to clearance from terrain during the recovery. Failure to do so would be considered unsatisfactory performance.

Critérios de Avaliação.

O critérios de avaliação para uma recuperação de uma aproximaçã-de-stall não deve ordenar uma predeterminada ou perda mínima de altitude. O critério de avaliação apropriado deve considerar as variáveis que estão presentes na hora do aviso de stall e seus efeitos na altitude de recuperação. O piloto deve recuperar a velocidade apropriada da manobra para a configuração da aeronave sem exceder as limitações da aeronave ou perder excessiva constante altitude com a capacidade de performance da aeronave. É esperado que alguma perda de altitude ocorrerá durante a recuperação. O piloto deve,  todavia, ter consideração com a dosobstrução do terreno durante a recuperação. Falha para fazer assim seria considerada performance insatisfatória.

Realistic Settings.

In the simulator, an approach-to-stall checking event may be maneuver-based or scenario-based with an entry altitude consistent with normal operating environments. The entry parameters, including W&B, should be within aircraft limitations to ensure adequate performance for recovery from initial indications of a stall. During training, the trainee may be asked to ignore some aural and visual indications of impending stall in order to practice the more difficult control movements needed to recover from the stick shaker. During checking, the trainee should be evaluated on recovering at the first indication of stall, even if it is based on an aural or visual indication, even if it occurs before the stick shaker or stick pusher (if installed).

Configurações Realistas.

No simulador, um evento de exame de aproximação-de-stall pode ser baseado em manobra ou baseado em cenário com uma altitude de entrada consistente em ambientes de operação normal. Os parâmetros de entrada, incluindo Peso & Balanceamento, devem estar dentro das consistentes limitações para assegurar performance adequada para recuperação de indicações inciais de um stall. Durante treinamento, o [piloto'em treinamento pode ser pedido para ignorar algumas indicações sonoras e visuais de iminente stall em ordem de praticar os mais dificeis movimentos de controle necessários para recuperar do aviso do Stick Shaker. Durante o exame, o piloto treinanedo deve ser avaliado na recuperação na primeira indicação de stall, mesmo se ela estiver baseada numa indicação sonora ou vsual, mesmo se ela ocorrer antes do [aviso] de Stick Shaker ou stick pusher (se instalado).




quinta-feira, 17 de fevereiro de 2011

Have You Had Flight Simulator's Lazy Responses in Your Training?



TRANSPORT DELAY, means

The total flight simulator system processing time required for an input signal from a pilot primary flight control until motion system, visual system or instrument response. It is the overall time delay incurred from signal input until output response and is independent of the characteristic delay of the aeroplane simulated.

DEMORA DE TRADUÇÃO, significa


O tempo total exigido do processamento do sistema de simulador de voo para um sinal de entrada [feito] por um piloto através do controle de voo primário [demorar] até o sistema se mover, o sistema ser visualizado ou [obter] a reposta de um instrumento.


É a demora total de tempo implicada da entrada do sinal até a resposta de saída e é independente da demora característica do avião simulado.

For initial evaluation of flight simulators, the aeroplane manufacturer’s validation flight test data is preferred.

Para avaliação inicial de simuladores de voo, os dados de validação dos testes de vôo do fabricante do avião são preferidos.

The Problem

• Loss of control is the leading cause of fatalities in the worldwide commercial jet fleet

• In early 2010, the NTSB recommended:

– training centers develop and conduct training that incorporates stalls that are fully developed and unexpected

– simulation model fidelity requirements to support an expanded set of stall recovery training requirements be defined and codified

Today’s Upset Training Requirements

• FAA:

Requires recoveries in the simulator from approach-to-stalls in the clean, takeoff, and landing configurations

• European Aviation Safety Agency

Used to demonstrate ability to recover from full stall, although now it is typically a briefing

• Transport Canada

Upset training is required for airline operations

O Problema


• Perda de controle é a causa líder de fatalidades na frota mundial de jatos comerciais


• No início de 2010, a NTSB recomendou:
-  centros de treinamento desenvolvam e conduzam treinamento que incorporem perda de sustentação que seja totalmente avançada e inesperada
-  requisitos de modelo de fidelidade de simulação para apoiar uma série ampliada de requisitos de treinamento de recuperação de perda de sustentação

Requisitos de Treinamento Apreensivo de Hoje

• FAA:
Exige recuperações no simulador de vôo das recuperações de aproximação de perda de sustentação nas configurações limpa, decolagem e pouso


• EASA:
Acostumado a demonstrar habilidade para recuperar perda total de sustentação, embora isso seja tipicamente um briefing


• TRANSPORT CANADA
Treinamento com Transtorno é requerido para operações de linhas aéreas


TESTING FOR FLIGHT SIMULATOR QUALIFICATION

Requirements

1. GENERAL

1.1 Flight deck, a full-scale replica of the aeroplane simulated.
Direction of movement of controls and switches identical to that in the aeroplane. Equipment for operation of the cockpit windows should be included in the flight simulator, but the actual windows need not be operable.

Note - The flight deck, for flight simulator purposes, consists of all that space forward of a cross section of the fuselage at the most extreme aft setting of the pilots’ seats. Additional required flight crew member duty stations and those required bulkheads aft of the pilots’ seats are also considered part of the flight deck and shall replicate the aeroplane.

1.2 Circuit breakers that affect procedures and/or result in observable flight deck indications properly located and functionally accurate.

1.3 Flight dynamics model that accounts for various combinations of drag and thrust normally encountered in flight corresponding to actual flight conditions, including the effect of change in aeroplane attitude, thrust, drag, altitude, temperature, gross mass, moments of inertia, centre of gravity location and configuration.

1.4 All relevant instrument indications involved in the simulation of the applicable aeroplane to automatically respond to control movement by a flight crew member or external disturbance to the simulated aeroplane, i.e. turbulence or wind shear.

1.5 Communications, navigation, and caution and warning equipment corresponding to that installed in the applicant’s aeroplane with operation within the tolerances prescribed for the applicable airborne equipment.

1.6 In addition to the flight crew member duty stations, three suitable seats for the instructor/observer and authority inspector. The authority will consider options to this requirement based on unique flight deck configurations. The location of these seats shall provide an adequate view of the pilots’ panels and forward windows.

Observer seats need not represent those found in the aeroplane but shall be adequately secured to the floor of the flight simulator, fitted with positive restraint devices and of sufficient integrity to safely restrain the occupant during any known or predicted motion system excursion.


1.7 Flight simulator systems to simulate the applicable aeroplane system operation, both on the ground and in flight. Systems shall be operative to the extent that all normal, abnormal and emergency operating procedures can be accomplished.

1.8 Instructor controls to enable the operator to control all required system variables and insert abnormal or emergency conditions into the aeroplane systems.

1.9 Control forces and control travel which correspond to that of the replicated aeroplane. Control forces should react in the same manner as in the aeroplane under the same flight conditions.

1.10 Ground handling and aerodynamic programming to include:

1.10.1 Ground effect. For example: round-out, flare and touchdown.
This requires data on lift, drag, pitching moment, trim and power in ground effect.

1.10.2 Ground reaction. Reaction of the aeroplane upon contact with the runway during landing to include strut deflections, tire friction, side forces and other appropriate data, such as weight and speed, necessary to identify the flight condition and configuration.

1.10.3 Ground handling characteristics. Steering inputs to include crosswind, braking, thrust reversing, deceleration and turning radius.

1.11 Wind shear models which provide training in the specific skills required for recognition of wind shear phenomena and execution of required manoeuvres. Such models shall be representative of measured or accident derived winds, but may include simplifications which ensure repeatable encounters. For example, models may consist of independent variable winds in multiple simultaneous components. Wind models should be available for the following critical phases of flight:

1) prior to take-off rotation;

2) at lift-off;

3) during initial climb;

4) short final approach.

Note - The United States FAA Wind Shear Training Aid, wind models from the United Kingdom Royal Aerospace Establishment (RAE), the Joint Airport Weather Studies (JAWS) project or other recognized sources may be implemented and shall be supported and properly referenced in the QTG. Wind models from alternative sources may also be used if supported by aeroplane related data and such data are properly supported and referenced in the QTG.


Use of alternative data must be coordinated with the authority prior to submission of the QTG for approval.

1.12 Representative crosswinds and instructor controls for wind speed and direction.

1.13 Representative stopping and directional control forces for at least the following runway conditions based on aeroplane related data:

1) dry;

2) wet;

3) icy;

4) patchy wet;

5) patchy icy;

6) wet on rubber residue in touchdown zone.

1.14 Representative brake and tire failure dynamics (including antiskid) and decreased braking efficiency due to brake temperatures based on aeroplane related data.

1.15 A means for quickly and effectively conducting daily testing of flight simulator programming and hardware.

1.16 Flight simulator computer capacity, accuracy, resolution and dynamic response to fully support the overall flight simulator fidelity.

1.17 Control feel dynamics which replicate the aeroplane simulated.

Free response of the controls shall match that of the aeroplane within tolerance given in Appendix B. Initial and upgrade evaluations will include control-free response (pitch, roll and yaw controllers) measurements recorded at the controls. The measured responses shall correspond to those of the aeroplane in take-off, cruise and landing configurations.

1.17.1 For aeroplanes with irreversible control systems, measurements may be obtained on the ground if proper pitot static inputs are provided to represent conditions typical of those encountered in flight. Engineering validation or aeroplane manufacturer rationale shall be submitted as justification to ground test or to omit a configuration.

1.17.2 For simulators requiring static and dynamic tests at the controls, special test fixtures will not be required during initial evaluations if the QTG shows both test fixture results and alternate test method results, such as computer data plots, which were obtained concurrently. Repeat of the alternate method during initial
evaluation may then satisfy this requirement.

1.18 Relative response of the visual system, flight deck instruments and initial motion system coupled closely to provide integrated sensory cues. Visual scene changes from steady state disturbance (i.e. the start of the scan of the first video field containing different information) shall occur within the system dynamic response limit of 150 milliseconds (ms). Motion onset shall also occur within the system dynamic response limit of 150 ms. While motion onset should occur before the start of the scan of the first video field containing different information, it must occur before the end of the scan of the same video field. The test to determine compliance with these requirements shall include simultaneously recording the output from the pilot’s pitch, roll and yaw controllers, the output from the accelerometer attached to the motion system platform located at an acceptable location near the pilots’ seats, the output signal to the visual system display (including visual system analog delays) and the output signal to the pilot’s attitude indicator or an equivalent test approved by the authority. The following two methods are acceptable means to prove compliance with the above requirement:

1.18.1 Transport delay: A transport delay test may be used to demonstrate that the flight simulator system response does not exceed 150 ms. This test shall measure all the delays encountered by a step signal migrating from the pilot’s control through the control loading electronics and interfacing through all the simulation software modules in the correct order, using a handshaking protocol, finally through the normal output interfaces to the motion system, to the visual system and instrument displays. A recordable start time for the test should be provided by a pilot flight control input. The test mode shall permit normal computation time to be consumed and shall not alter the flow of information through the hardware/software system. The transport delay of the system is then the time between the control input and the individual hardware responses. It need only be measured once in each axis.

1.18.2 Latency: The visual system, flight deck instruments and initial motion system response shall respond to abrupt pitch, roll and yaw inputs from the pilot’s position within 150 ms of the time, but not before the time, when the aeroplane would respond under the same conditions. The objective of the test is to compare the recorded response of the flight simulator to that of the actual aeroplane data in the take-off, cruise and landing configuration for rapid control inputs in all three rotational axes. The intent is to verify that the simulator system response does not exceed 150 ms (this does not include aeroplane response time as per the manufacturer’s data) and that the motion and visual cues relate to actual aeroplane responses. For aeroplane response, acceleration in the appropriate corresponding rotational axis is preferred.

1.19 Aerodynamic modelling, that includes, for aeroplanes issued an original type certificate after June 1980, low altitude level flight ground effect, Mach effect at high altitude, normal and reverse dynamic thrust effect on control surfaces, aeroelastic effect and representations of non-linearities due to side-slip based on aeroplane flight test data provided by the aeroplane manufacturer.

1.20 Modelling that includes the effects of airframe and engine icing.

1.21 Aerodynamic and ground reaction modelling for the effects of reverse thrust on directional control.

1.22 Realistic implementation of aeroplane mass properties, including mass, centre of gravity and moments of inertia as a function of payload and fuel loading.

1.23 Self-testing for simulator hardware and programming to determine compliance with the simulator performance tests as prescribed in Appendix B. Evidence of testing must include flight simulator number, date, time, conditions, tolerances and the appropriate dependent variables portrayed in comparison to the
aeroplane data. Automatic flagging of “out-of-tolerance” situations is encouraged.

1.24 Timely permanent update of flight simulator hardware and programming subsequent to aeroplane modification.

1.25 Daily pre-flight documentation either in the daily log or in a location easily accessible for review.


2. MOTION SYSTEM

2.1 Motion cues perceived by the pilot representative of aeroplane motions (e.g. touchdown cues should be a function of the simulated rate of descent).

2.2 A motion system which produces cues at least equivalent to those of a six-degree-of-freedom synergistic platform motion system.

2.3 A means of recording the motion response time as required.

2.4 Motion effects programming to include:

2.4.1 Effects of runway rumble, oleo deflections, ground speed, uneven runway, centre line lights and taxiway characteristics;

2.4.2 Buffets on the ground due to spoiler/speed-brake extension and thrust reversal;

2.4.3 Bumps associated with the landing gear;

2.4.4 Buffet during extension and retraction of landing gear;

2.4.5 Buffet in the air due to flap and spoiler/speed-brake extension;

2.4.6 Approach-to-stall buffet;


2.4.7 Touchdown cues for main and nose gear;

2.4.8 Nosewheel scuffing;

2.4.9 Thrust effect with brakes set;

2.4.10 Mach and manoeuvre buffet;

2.4.11 Tire failure dynamics;

2.4.12 Engine malfunction and engine damage; and

2.4.13 Tail and pod strike.

2.5 Motion vibrations: Tests with recorded results that allow the comparison of relative amplitudes versus frequency are required.

2.5.1 Characteristic motion vibrations that result from operation of the aeroplane, in so far as vibration marks an event or aeroplane state that can be sensed at the flight deck, shall be present. The flight simulator shall be programmed and instrumented in such a manner that the characteristic vibration modes can be measured and
compared to aeroplane data.

2.5.2 Aeroplane data are also required to define flight deck motions when the aeroplane is subjected to atmospheric disturbances.

General purpose disturbance models that approximate demonstrable flight test data are acceptable. Tests with recorded results that allow the comparison of relative amplitudes versus frequency are required.


3. VISUAL SYSTEMS

3.1 Visual system capable of meeting all the standards of this appendix and Appendices B and C.

3.2 Continuous, cross-cockpit, minimum collimated visual field of view providing each pilot with 180 degrees horizontal and 40 degrees vertical field of view. Application of tolerances requires the field of view to be not less than a total of 176 measured degrees horizontal field of view (including not less than ±88 measured degrees either side of the centre of the design eye point) and not less than a total of 36 measured degrees vertical field of view from the pilot’s and co-pilot’s eye points.

3.3 A means of recording the visual response time for visual systems as required.

3.4 Visual textural cues to assess sink rate and depth perception during take-off and landing.

3.5 Horizon and attitude correlated to the simulated attitude indicator.

3.6 A minimum of ten levels of occulting.

3.7 Surface resolution demonstrated by a test pattern of objects shown to occupy a visual angle of not greater than 2 arc minutes in the visual display used on a scene from the pilot’s eye point.

3.8 Light-point size — not greater than 5 arc minutes.

3.9 Light-point contrast ratio — not less than 25:1.

3.10 Daylight, twilight (dusk/dawn) and night visual capability as defined by terms in the glossary section of this document

3.10.1 Contrast ratio. A raster drawn test pattern filling the entire visual scene (three or more channels) shall consist of a matrix of black and white squares no larger than 10 degrees and no smaller than 5 degrees per channel with a white square in the centre of each channel.


4. SOUND SYSTEM

4.1 Significant flight deck sounds corresponding to those of the aeroplane which result from pilot actions.

4.2 Sound of precipitation, rain removal equipment and other significant aeroplane noises perceptible to the pilot during normal and abnormal operations and the sound of a crash when the simulator is landed in excess of limitations.

4.3 Comparable amplitude and frequency of flight deck noises, including engine and airframe sounds. The sounds shall be coordinated with the required weather.

4.4 The volume control shall have an indication of sound level setting which meets all qualification requirements.

REFERENCES

ICAO Doc 9625 AN/938, Manual of Criteria for the Qualification of Flight Simulators, 2003